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The Korovkin-type approximation theory for function algebras is studied. A
complete characterization of the BKW-operators studied by Takahasi is given for
function algebras, and this answers Altomare's conjecture affirmatively. As an
application, the BKW-operators on the disk algebra for test functions [1, z] are
determined. � 1996 Academic Press, Inc.

1. Introduction

In 1953, Korovkin [10] proved an interesting approximation theorem:
If [Tn]n # N is a sequence of positive linear operators on C([0, 1]) such
that &Tn t j&t j&� � 0 as n � � for j=0, 1, and 2, then &Tn f & f &� � 0
for every f # C([0, 1]) (see also [11]). This theorem says that to prove that
a sequence of positive linear operators [Tn]n # N on C([0, 1]) converges
strongly to the identity operator, it is sufficient to check the convergence
&Tn f & f &� � 0 for only three functions f (t)=1, t, and t2. In 1968,
Wulbert [20] strengthened this theorem as follows. Let C(0) be the space
of all continuous functions on a compact Hausdorff space 0. Let S be a
subspace of C(0) with 1 # S such that the Choquet boundary of S coin-
cides with 0. Let [T*]* # 4 be a net of bounded linear operators on C(0)
such that &T*& � 1 and &T* f & f &� � 0 for each f # S. Then Wulbert
theorem says that &T* f & f &� � 0 for every f # C(0).
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Recently, Takahasi [15�19] has studied bounded linear operators on
Banach spaces satisfying a Wulbert-type property, and he called them
BKW-operators (see [16]). Let X, Y be normed spaces. We denote by
B(X, Y) the set of all bounded linear operators from X into Y. For a given
subset S of X, Takahasi denotes by BKW (X, Y; S) the set of all operators
T in B(X, Y) satisfying the following BKW condition (BKW is an
abbreviation in honor of Bohman [4], Korovkin [10] and Wulbert [20]).

BKW: For every net [T*]* # 4 in B(X, Y) such that &T*& � &T& and
&T*s&Ts& � 0 for each s # S, it follows that &T*x&Tx& � 0 for every x # X.

Takahasi used nets of operators in the definition of BKW. It is natural
to study sequential type BKW-operators as Korovkin's theorem. Hence we
denote by s-BKW(X, Y; S) the set of T in B(X, Y) satisfying the following
s-BKW condition.

s-BKW: For every sequence [Tn]n # N in B(X, Y) such that &Tn& � &T& and
&Tn s&Ts& � 0 for each s # S, it follows that &Tn x&Tx& � 0 for every x # X.

It is not difficult to see that BKW(X, Y; S)/s-BKW(X, Y; S). When
X = Y, we write B(X) = B(X, X) and BKW(X; S) = BKW(X, X; S), etc.
Then by the Korovkin and Wulbert theorems, I # BKW(C([0,1]); [1, t, t2])
and I # BKW(C(0); S) for those subsets S whose Choquet boundary coin-
cides with 0, where I is the identity operator.

Our subject of this paper is to determine all operators in BKW(X, Y; S)
and s-BKW(X, Y; S) for a given subset S of X. Another interesting
problem is to determine all subsets S of X which satisfy T # BKW(X, Y; S)
for a given operator T # B(X, Y). In this case, S is called the Korovkin set
for T (see a recent monograph by Altomare and Campiti [3]). These two
problems are essentially the same.

In Section 2, we prove that if S is a separable subset of X then
s-BKW(X, Y; S) = BKW(X, Y; S), but generally s-BKW(X; S) {
BKW(X; S). In Section 3, we give a characterization of all operators T in
BKW(X, A; S) for a function algebra A which is a generalization of [19,
Theorem 1.4]. This characterization of BKW(X, A; S) gives us an affir-
mative answer to the conjecture posed by Altomare in [2]. In Section 4,
we determine BKW(A; [1, z]) for the disk algebra A and discuss
BKW(A; [1, z, z2]).

2. Sequential BKW-Operators

In [17, 19], Takahasi proved the following lemma.

Lemma 1. Let T # B(X, Y). Then T # BKW(X, Y; S) if and only if for
every net [T*]* # 4 in B(X, Y) such that &T*&�&T& for each * # 4 and
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&T* s&Ts& � 0 for each s # S, it follows that &T* x&Tx& � 0 for every
x # X.

By the same method, we can prove the following. Here we give an
elementary proof. We denote by N the set of positive integers.

Lemma 2. Let T # B(X, Y). Then T # s-BKW(X, Y; S) if and only if for
every sequence [Tn]n # N in B(X, Y) such that &Tn&�&T& for each n # N and
&Tn s&Ts& � 0 for each s # S, it follows that &Tn x&Tx& � 0 for every
x # X.

Proof. The proof of sufficiency is trivial. Hence we suppose that
T # s-BKW(X, Y; S). When T=0, there is nothing to prove, so we assume
that T{ 0. Let [Tn]n # N be a sequence in B(X, Y) such that

&Tn&�&T& for n # N, (1)

&Tn s&Ts& � 0 for s # S. (2)

To prove &Tn x&Tx& � 0 for x # X, suppose not. Then there exists x0 # X
such that

lim sup
n � �

&Tn x0&Tx0&{0.

By considering a subsequence, we may assume that

lim
n � �

&Tn x0&Tx0 &{0. (3)

Let

Gn=Tn&an(T&Tn)=(1+an) Tn&an T, (4)

where an is a nonnegative number such that &Gn &=&T&. By (1), (3), and
the intermediate valued theorem, there exist such an and [an]n is a
bounded sequence. By (4),

Gn&T=(1+an)(Tn&T ). (5)

Then by (2), for each s # S we have

&Gn s&Ts&=(1+an)&Tn s&Ts& � 0 as n � �.

Since T # s-BKW(X, Y; S), &Gn x&Tx& � 0 for every x # X. But by (3) and
(5), &Gn x0&Tx0&=(1+an)&Tn x0&Tx0& does not converge to 0. This is
a contradiction.
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Theorem 1. Let S be a separable subset of X. Then s-BKW(X, Y; S)=
BKW(X, Y; S).

Proof. We need to prove that s-BKW(X, Y; S)/ BKW(X, Y; S). Let
T # s-BKW(X, Y; S). Suppose that T � BKW(X, Y; S). Then by Lemma 1,
there exists a net [T*]* # 4 in B(X, Y) such that

&T*&�&T& for every * # 4, (1)

&T* s&Ts& � 0 for s # S, (2)

and &T* x0&Tx0& does not converge to 0 for some x0 # X. Then there
exists a positive number _>0 such that for each *0 # 4, we have

&T* x0&Tx0&>_ for some *>*0 . (3)

Let S� be the closed linear span of S in X. Then S� is a separable Banach
space. Here we use the fact that the strong operator topology on bounded
sets of B(X, Y) is metrizable if X is separable. By (1) and (2), we see that
T* � T strongly on S� . Hence by the above fact and (3), there exists a sub-
sequence [T*n]n # N in [T*]* # 4 such that T*n � T strongly on S� and

&T*n x0&Tx0&>_ for n # N. (4)

Since T # s-BKW(X, Y; S), by Lemma 2 T*n � T strongly on X. But this
contradicts (4). Thus we get our assertion.

The following example shows that Theorem 1 is not true without the
condition of separability of S.

Example 1. Let 0=;N"N, where ;N is the Stone�C8 ech compactifi-
cation of N, and let S be the ideal of all continuous functions vanishing
at a single point. We note that S is not a separable subspace of C(0). In
[13], Scheffold proved that

I � BKW(C(0); S) and I # s-BKW(C(0); S),

where I is the identity operator on C(0); see also [9, p. 164].

3. Function Algebras

Let 0 be a compact Hausdorff space. A supremum norm closed sub-
algebra A of C(0) is called a function algebra on 0 if A contains constant
functions, and for distinct points x, y in 0 there exists a function f # A such
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that f (x){f ( y). In this section, every A denotes a function algebra on 0.
We denote by �A the Shilov boundary of A, that is, �A is the smallest
closed subset of 0 such that & f &�=sup[ | f (x)|; x # �A] for every f # A.
When A=C(0), we have �A=0. We identify a point ` in 0 with $` the
point evaluation of A at `: $` ( f )=f (`) for f # A. Hence we may consider
that �A/0/A*. A closed subset E of 0 is called a peak set for A if there
exists f in A such that f=1 on E and | f |<1 on 0"E. A point ` in 0 is
called a p-point if [`]=�: E: for some peak sets E: . The set of p-points
is dense in �A. Let D be the open unit disk and let 1 be the unit circle. Let
A be the disk algebra, that is, A is the supremum norm closed algebra of
continuous functions on D� and analytic in D. Then we have �A=1. If
f # A with & f &��1, then h b f # A for every h # A. References [5, 7] are
nice for function algebras and the disk algebra.

In this section, we study s-BKW(X, A; S) and BKW(X, A; S) for normed
spaces X and S/X. We denote by X* the dual space of X and
X*r=[F # X*; &F&�r] for r>0. Let

US (X*r )=[F # X*r ; if G # X*r , F=G on S, then F=G on X].

The set US(X*r ) is called the uniqueness set for S and this set plays an
essential role in the study of the Korovkin type of approximation theorems
(see [12, 16, 19]).

Lemma 3 [19, Theorem 1.2]. Let X, Y be normed spaces and S/X. Let
E be a weak*-closed subset of Y*1 such that &y&=sup[ |F( y)|; F # E] for
every y # Y. Let T # B(X, Y). If T*(E)/US(X*&T&), then T # BKW(X, Y; S),
where T* is the dual operator of T.

The main interest is whether the converse assertion of the above result
is true or not for a function algebra Y=A and E=�A. In [19, Theorem
1.4], Takahasi proved that the converse is true when Y is a supremum
norm closed subalgebra of continuous functions on a locally compact
Hausdorff space which contains the space of all continuous functions
having compact support. Therefore

BKW(X, C(0); S)=[T # B(X, C(0)); T*(0)/US(X*&T&)]

for every normed space X and S/X, where we identify a point ` in 0 with
the unit point mass $` at `. When Y=A is a function algebra, we have the
following theorem.

Theorem 2. Let A be a function algebra. Let X be a normed space and
S/X. Then

BKW(X, A; S)=[T # B(X, A); T*(�A)/US(X*&T&)].
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Moreover, if �A satisfies the first countability axiom, then s-BKW(X, A; S)
=BKW(X, A; S).

Corollary 1. If 0 is a compact Hausdorff space satisfying the first
countability axiom, then s-BKW(X, C(0); S)=BKW(X, C(0); S) for every
normed space X and S/X.

By Example 1, we can not remove the condition of the first countability
of 0 in Corollary 1.

Proof of Theorem 2. By Lemma 3, we have

[T # B(X, A); T*(�A)/US(X*&T&)]/BKW(X, A; S).

To show the converse inclusion, let T # BKW(X, A; S) and `0 # �A. We
may assume &T&=1. We shall prove that

T* `0=T* $`0
# US(X*1).

Let F # X* such that &F&�1 and F=T*`0 on S. Then

F(s)=(Ts)(`0) for s # S. (1)

It is sufficient to prove that

F(x)=(Tx)(`0) for every x # X. (2)

Let [U*]* # 4 be the net of all open neighborhoods of `0 in �A. Then there
exists a p-point `* in U* , and there exists h* # A such that &h* &�=1 and

`* # [! # �A; |h*(!)|=1]=[! # �A; h*(!)=1]/U* . (3)

For each fixed * # 4, using h* we shall find a sequence [ f*, n]n # N in A
such that

f*, n(`*)=1 for every n # N, (4)

| f*, n |+|1&f*, n |<1+1�n on �A, (5)

| f*, n |<1�n on �A"U* . (6)

Let

Bn=[z # C; |z|+|1&z|�1+1�n] and B� n=[z # C; |z|<1�n] & Bn . (7)

Let

g(z)=(1+z)�2, z # D� ,
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and for 0<r<1 let

,r(z)=
z&r
1&rz

, z # D� ,

�r(z)=
_(z)r&1
_(z)r+1

, where _(z)=
1+z
1&z

, z # D� .

Then g, ,r , and �r are contained in the disk algebra A. Since �r(D� ) is the
lens-shaped closed domain (see [14, p. 27]), by taking r1 very close to 0
we have

g(�r1
(D� ))/Bn . (8)

We note that r1 depends on n. By (3), 1 # h*(U*) and h*(U c
*) is a compact

subset of D. Hence by taking r2 very close to 1, we have

,r2
(h*(U c

*))/�&1
r1

(g&1(B� n)). (9)

We note that r2 depends on n. Let

f*, n=g b �r1
b ,r2

b h* .

Since g b �r1
b ,r2

# A and h* # A, we have f*, n # A. Since 1=g(1)=
�r1

(1)=,r2
(1), by (3) we get (4). By (7) and (8), we have (5). By (7) and

(9), we get (6).
Now for * # 4 and n # N, let

T $*, nx=F(x) f*, n+(1&f*, n) Tx, x # X. (10)

Then T $*, n # B(X, A), and on �A we have

|T $*, nx|�|F(x)| | f*, n |+|1&f*, n |&Tx&�

�(| f*, n |+|1&f*, n | ) &x&

�(1+1�n)&x& by (5).

Hence &T $*, n &�1+1�n. Let

T*, n=
n

n+1
T $*, n . (11)

Then &T*, n&�1=&T&. We note that [T*, n] (*, n) # 4_N is a net. We claim
that

lim
*, n

&T*, ns&Ts&�=0 for s # S. (12)
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To show this, let s # S with &s&=1. By (10) and (11),

T*, nx&Tx=
n

n+1
(F(x)&Tx) f*, n&

1
n+1

Tx, x # X. (13)

For any =>0, by (1) there exists *= # 4 such that

|F(s)&(Ts)(`)|<= for ` # U* , *>*= .

Then by (5) and (13),

|(T*, ns&Ts)(`)|�=+
1

n+1
for ` # U* , *>*= . (14)

By (6) and (13),

|(T*, n s&Ts)(`)|<3�(n+1) for ` # �A"U* , *>*= . (15)

By (14) and (15), we obtain (12).
Since T # BKW(X, A; S), by Lemma 1 we have

lim
*, n

&T*, nx&Tx&�=0 for every x # X.

Hence

lim
*, n

|(T*, nx&Tx)(`*)|=0. (16)

By (4) and (13),

(T*, n x&Tx)(`*)=
n

n+1
F(x)&(Tx)(`*).

Since `* � `0 , by (16) we get (2). As a consequence, we obtain

BKW(X, A; S)=[T # B(X, A); T*(�A)/US(X*&T&)]. (17)

When �A satisfies the first countability axiom, we can take a sequence of
open subsets [Un]n # N of �A such that

[`0]= ,
�

n=1

Un /Un+1 /Un .

Replacing * by n in the proof of the first assertion, by the same argument
we can prove that

s-BKW(X, A; S)/[T # B(X, A); T*(�A)/US(X*&T&)].

Then by (17) and BKW(X, A; S) / s-BKW(X, A; S), we obtain that
s-BKW(X, A; S)=BKW(X, A; S).
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When X=A, as a special case of Theorem 2 we have the following
corollary.

Corollary 2. Let A be a function algebra and S/A. Then the identity
operator is contained in BKW(A; S) if and only if for every ` # �A and
+ # A* such that &+&�1 and +(h)=h(`) for every h # S, it follows that +=`.

This result solves in the positive a conjecture posed by Altomare in [2].
Also, by Theorem 2, we have the following corollary. We note that this
corollary also follows from combining Corollary 2 with Altomare's result
[1, Theorem 3.1].

Corollary 3. Let A be a function algebra and S/A. Then the identity
operator is contained in BKW(A; S) if and only if for every function algebra
B, every T # B(A, B) satisfying T*(�B)/�A is contained in BKW(A, B; S).

4. BKW-Operators on the Disk Algebra

In this section, we mainly discuss BKW(A; S) for the disk algebra A.
By Theorem 2, for a function algebra A we have T # BKW(A; S) if and
only if T*(�A)/US(A*&T&). Generally, it is difficult to check whether T
satisfies the latter condition or not. For S/A, let S� be the closed linear
span of S. We have the following lemma (see also [19, Lemma 2.1]).

Lemma 4. Let A be a function algebra, S/A with S� {A, and R>0.
Then US(A*R)=US� (A*R). If F # US(A*R), then &F&S� =R, where &F&S� =
sup[ |F(s)|; s # S� , &s&�=1].

Proof. It is easy to see that US(A*R)=US� (A*R). Let F # US(A*R). To
prove &F&S� =R, suppose that &F&S� <R. By the Hahn�Banach extension
theorem, there exists G # A* such that G=F on S� and &G&=&F&S� <R.
Then there exists H # A* such that H=0 on S� , H{ 0 on A, and
&H&<R&&G&. Let

Gr=G+rH, 0�r�1.

Then &Gr&�R, Gr=G=F on S, and Gr1
{Gr2

for r1 {r2 . Hence
F � US(A*R). This is a contradiction.

We may identify A and A |�A Then A is a closed subalgebra of C(�A). We
denote by M(�A) the space of bounded (with respect to the total variation
norm) Borel measures on �A and Mr(�A)=[+ # M(�A); &+&�r] for r>0.
By the Hahn�Banach and Riesz representation theorems, for each F # A*
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there are some measures + in M(�A) such that &F&=&+& and F( f )=
��A f d+ for f # A. By identifying F # A* with one of the above measures +,
we consider that

A*/M(�A)=C(�A)*.

Under these considerations, Theorem 2 and Lemma 4 state the following.

Lemma 5. Let A be a function algebra and S/A with S� {A. Then T #
BKW(A; S) if and only if for each ` # �A, it follows that

(1) T*` # M(�A) and &T*`&=&T&,

(2) &T*`&=sup[ |��A s dT* `|; s # S� , &s&�=1],

(3) if + # M&T&(�A) and ��A s dT* `=��A s d+ for s # S, then
��A f dT* `=��A f d+ for every f # A.

In the above, condition (3) is essential, and (1) and (2) are deduced from
(3). To clear the condition on T*` for T # BKW(A; S), we add (1) and (2).

Let A be the disk algebra on D� . Then �A=1, the unit circle. For
� # A, let M� be the multiplication operator on A: M� f=�f for f # A.
For , # A with &,&��1, let C, be the composition operator on A: C, f=
f b , for f # A. If b # A and |b|=1 on 1, then b is a finite Blaschke product
and b has the form

b(z)=* `
k

n=1

&zn

|zn |
z&zn

1&znz
, z # D� ,

for some constant * with |*|=1 and zn # D, n=1, 2, . . . , k, where we
consider that &0�0=1 (see [7]). Since 1=�A, by Theorem 1 or 2 we
have s-BKW(A; [1, z])=BKW(A; [1, z]). In [16], Takahasi proves that
C, # BKW(A; [1, z]) for a finite Blaschke product ,. The following
theorem gives a complete characterization of operators in BKW(A; [1, z]).

Theorem 3. Let A be the disk algebra. Then

BKW(A; [1, z])=[aM� C, ; �, , are finite Blaschke products, a # C].

Proof. Let S=[1, z]. Let �, , # A with |�|=|,|=1 on 1 and let
T=M� C, . Then &T&=1. To show T # BKW(A; [1, z]), let ` # 1. By the
definition of T,

(T*`)( f )=(Tf )(`)=�(`)( f b ,)(`)=(�(`) $,(`))( f )

for f # A. Hence we may consider that T*`=,(`) $,(`) . Now it is easy to
see that T*` # US(A*1). By Theorem 2, T # BKW(A; [1, z]).
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Next, let T # BKW(A; [1, z]). We may assume that &T&=1. Let

�=T1 # A, (1)

,1=Tz # A. (2)

Now we shall prove

|�|=|,1 |=1 on 1. (3)

Let `0 # 1=�A. Then

|
1

dT* `0=(T* `0)(1)=(T1)(`0)=�(`0), (4)

|
1

zdT* `0=(Tz)(`0)=,1(`0). (5)

Since S=[1, z] and &a+bz&�=|a|+|b| for a, b # C, we have

sup {}|1
s dT* `0 } ; s # S� , &s&�=1==max {}|1

dT* `0 } , }|1
z dT* `0 }= .

Hence, by Lemma 5, we have &T* `0&=1 and then

|�(`0)|=1 or |,1(`0)|=1.

To prove (3), suppose not. Here we assume that |�(`0)|=1 and
|,1(`0)|<1. By the same way, we can work for the case |�(`0)|<1 and
|,1(`0)|=1. Since |�(`0) ,1(`0)|<1, it is not difficult to find many
probability measures & on 1 of the form

&=a $t1
+(1&a) $t2

, where 0<a<1 and t1 , t2 # 1,

such that

|
1

z d&=�(`0) ,1(`0).

Let +=�(`0) &. Then &+&=1, and by (4) and (5) we have

|
1

d+=�(`0)=|
1

dT* `0 and |
1

z d+=,1(`0)=|
1

z dT* `0 . (6)

By the above construction of +, it is easy to see the existence of +1 and
+2 satisfying (6) and �1 z2 d+1 {�1 z2 d+2 . Then by Lemma 5, T �
BKW(A; [1, z]). Hence we get (3).
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Now by (3), (4), and (5), for every ` # 1 we obtain

T*`=�(`) $,(`) , where ,(`)=,1(`)��(`).

Therefore we have

(Tf )(`)=(T*`)( f )=�(`)( f b ,)(`) for f # A.

When f=zn, we have

� ,n=,n
1 ��n&1 # A, n # N. (7)

By (1), (2), and (3), � and ,1 are finite Blaschke products. Then by (7),
we obtain ,1 �� # A and that ,=,1 �� is a finite Blaschke product. This
completes the proof.

By the same argument, we can get the following.

Theorem 4. BKW(C(1 ); [1, z])=[aM� C, ; �, , # C(1 ), |�|= |,|=1
on 1, a # C].

Also in the same way as the proof of Theorem 3, we obtain the following.

Theorem 5. BKW(A; [1, zn])=[0] and BKW(C(1); [1, zn])=[0]
for n�2.

Proof. Let n�2. We only prove the first assertion. Let T #
BKW(A; [1, zn]) and &T&=1. Let �=T1 # A and ,=Tzn # A. In the
same way as the proof of Theorem 3,

|�|=|,|=1 on 1.

Let ` # 1. Then

|
1

dT* `=�(`) and |
1

zn dT* `=,(`).

Let `1 , . . ., `n be the distinct points in 1 such that

`n
j =�(`) ,(`) for 1�j�n.

For a=(a1 , . . . , an) with aj�0 and �n
j=1 aj=1, let

+a=�(`) \ :
n

j=1

aj $`j+ .
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Then &+a&=1=&T*`&, and

|
1

d+a=�(`) and |
1

zn d+a=,(`).

It is not difficult to see that �1 zn+1 d+a {�1 zn+1 dT*` for some a=
(a1 , . . . , an). Hence, by Lemma 5, we have T � BKW(A; [1, zn]). This is a
contradiction.

Let T # BKW(A, A; [1, z]) with &T&=1 for a function algebra A. Then
in the same way as the proof of Theorem 3, we have

|T1|=|Tz|=1 on �A,

Tf=�( f b ,) for every f # A,

where �=T1 # A, ,=Tz�T1, and

(T1)(Tz�T1)n=(Tz)n�(T1)n&1 # A for n # N.

Here the reader may expect that , # A and T=M� C, for �, , # A. But it
is not so.

Example 2. Let H�(D) be the space of all bounded analytic functions
on D. For each f # H�(D), there exists a radial limit function f (ei%) for
almost every ei% # 1. We denote by H�(1 ) the space of these radial limit
functions, and we identify H�(1 ) with H�(D). Let A=H �(1 )+C(1 ).
Then A is an essential supremum norm closed subalgebra of L�(1 ), hence
A is a function algebra (see [6]). By [8], there exist inner functions q1 and
q2 such that q2 �q1 � A and qn+1

2 �qn
1 # A for every n # N. Let

Tf=q1( f b (q2 �q1)) for f # A.

Then T # B(A, A). By the first paragraph of the proof of Theorem 3, we
have T # BKW(A, A; [1, z]). By the definition of T, T1=q1 and Tz=q2 ,
so that Tz�T1=q2 �q1 � A. But (Tz)n�(T1)n&1=qn

2 �qn&1
1 # A for n # N.

Finally, we discuss BKW(A; [1, z, z2]). In [16, Theorem l], Takahasi
proved that if ,1 and ,2 are finite Blaschke products, and a1 , a2 are
positive numbers, then a1 C,1

+a2 C,2
# BKW(A; [1, z, z2]). He actually

proved that

Lemma 6. [a1$z1
+a2$z2

;z1 ,z2 # 1,a1+a2=1,a1 ,a2�0]/U[1,z,z2](M1(1)).

By Takahasi's result and Theorem 3, we have a conjecture that if
T # BKW(A; [1, z, z2]), then T has the form

T=a1 M�1
C,1

+a2 M�2
C,2

,
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where �i and ,i , i=1, 2, are finite Blaschke products and a1 , a2 # C. We
show two examples which say the above conjecture is not true.

Example 3. Let *(ei%)=(ei%+e&i%+2)�4, ei% # 1. Then 0�*�1 on 1.
Let

(Tf )(ei%)=*(ei%) f (ei%)+(1&*(ei%)) f (e2i%)=(*Cz+(1&*) Cz2)( f )(ei%)

for f # A. Then |(Tf )(ei%)| � &f &� . For f # A, we can write as f (ei%)=
f (0)+ei%h(ei%) for some f # A. Then

(Tf )(ei%)=f (e2i%)+*(ei%)( f (ei%)&f (e2i%))

=f (e2i%)+*(ei%) ei% (h(ei%)&ei% h(e2i%))

=f (e2i%)+(h(ei%)&ei% h(e2i%))(e2i%+1+2ei%)�4

# A.

Hence T # B(A), &T&=1, and T1=1. By the definition of T,

T* ei%=(ei%+e&i%+2)�4 $ei%+(1&(ei%+e&i%+2)�4) $e2i% .

Then by Lemma 6, T* ei% # U[1, z, z2](M1(1 )) for every ei% # 1. Hence by
Theorem 2, we have T # BKW(A; [1, z, z2]). We note that * � A.

Example 4. We consider that [ei%; &?<%�?]=1. Let *(ei%)=
(ei%�2+e&i%�2+2)�4, ei% # 1. Then 0�*�1 on 1. Let

(Tf )(ei%)=*(ei%) f (ei%�2)+(1&*(ei%)) f (&ei%�2)

=(* C- z+(1&*) C&- z)( f )(ei%)

for f # A. We note that the function - z=ei%�2 on 1 is not continuous at
z=&1. We note that T1=1. For n�1, we have

(Tz2n)(ei%)=*(ei%)(ein%&ein%)+ein%=ein%=zn # A,

(Tz2n+1)(ei%)=2*(ei%) ein% ei%�2&ein% ei%�2

=(ei(n+1) %+ein%)�2

=(zn+1+zn)�2 # A.

For each f # A, there exists a sequence of analytic polynomials [ pn]n such
that &pn&f &� � 0. By the above, Tpn # A. By the definition of T,
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&Tpn&Tf &� � 0 as n � �. Hence Tf # A for every f # A. Then in the
same way as Example 3, T # BKW(A; [1, z, z2]), &T&=1, and T1=1.

By the above two examples, we think that it is fairly difficult to give a
complete description of operators in BKW(A; [1, z, z2]).
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