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The Korovkin-type approximation theory for function algebras is studied. A
complete characterization of the BK W-operators studied by Takahasi is given for
function algebras, and this answers Altomare’s conjecture affirmatively. As an
application, the BKW-operators on the disk algebra for test functions {1, z} are
determined. © 1996 Academic Press, Inc.

1. INTRODUCTION

In 1953, Korovkin [10] proved an interesting approximation theorem:
If {T,},c~ is a sequence of positive linear operators on C([0, 1]) such
that | T,/ — /||, >0 as n— oo for j=0,1, and 2, then |T,f—f||..,—0
for every fe C([0, 1]) (see also [ 11]). This theorem says that to prove that
a sequence of positive linear operators {7,},.n on C([0,1]) converges
strongly to the identity operator, it is sufficient to check the convergence
IT,f—fll.,—0 for only three functions f(¢t)=1,¢, and > In 1968,
Wulbert [20] strengthened this theorem as follows. Let C(£2) be the space
of all continuous functions on a compact Hausdorff space Q. Let S be a
subspace of C() with 1€ S such that the Choquet boundary of S coin-
cides with Q. Let {T,},., be a net of bounded linear operators on C(Q)
such that |T,| —1 and |T,f—f||., =0 for each fe€S. Then Wulbert
theorem says that | T, f — f|., — 0 for every fe C(Q).
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Recently, Takahasi [15-19] has studied bounded linear operators on
Banach spaces satisfying a Wulbert-type property, and he called them
BKW-operators (see [16]). Let X, Y be normed spaces. We denote by
B(X, Y) the set of all bounded linear operators from X into Y. For a given
subset S of X, Takahasi denotes by BKW (X, Y;.S) the set of all operators
T in B(X,Y) satisfying the following BKW condition (BKW is an
abbreviation in honor of Bohman [4], Korovkin [ 10] and Wulbert [20]).

BKW: For every net {T,},., in B(X,Y) such that |7,| - ||T| and
|T,s— Ts| — 0 for each s € S, it follows that |7, x — Tx| — 0 for every x € X.

Takahasi used nets of operators in the definition of BKW. It is natural
to study sequential type BK W-operators as Korovkin’s theorem. Hence we
denote by s-BKW(X, Y; S) the set of 7' in B(X, Y) satisfying the following
s-BKW condition.

s-BKW: For every sequence { T} .~ in B(X, Y) such that | T, | — || 7 and
|T,s— Ts|| —» 0 for each s € S, it follows that |7, x — Tx|| — 0 for every x € X.

It is not difficult to see that BKW(X, Y;S)=s-BKW(X, Y; S). When
X =Y, we write B(X) = B(X, X) and BKW(X; S) = BKW(X, X; S), etc.
Then by the Korovkin and Wulbert theorems, 7e BKW(C([0,1]); {1, ¢, *})
and /e BKW(C(Q); S) for those subsets S whose Choquet boundary coin-
cides with Q, where I is the identity operator.

Our subject of this paper is to determine all operators in BKW(X, Y; S)
and s-BKW(X, Y;S) for a given subset S of X. Another interesting
problem is to determine all subsets S of X which satisfy Te BKW(X, Y; S)
for a given operator Te B(X, Y). In this case, S is called the Korovkin set
for T (see a recent monograph by Altomare and Campiti [3]). These two
problems are essentially the same.

In Section 2, we prove that if S is a separable subset of X then
s-BKW(X, ¥; S) = BKW(X, ¥;S), but generally s-BKW(X;S) #
BKW(X; S). In Section 3, we give a characterization of all operators 7 in
BKW(X, 4;S) for a function algebra 4 which is a generalization of [ 19,
Theorem 1.4]. This characterization of BKW(X, 4; S) gives us an affir-
mative answer to the conjecture posed by Altomare in [2]. In Section 4,
we determine BKW(.eZ; {1,z}) for the disk algebra ./ and discuss
BKW(; {1, z, 2°}).

2. SEQUENTIAL BKW-OPERATORS
In [17, 19], Takahasi proved the following lemma.

LemMA 1. Let TeB(X, Y). Then Te BKW(X, Y;S) if and only if for
every net {T,},., in B(X,Y) such that ||T,| <||T|| for each i€ A and



SEQUENTIAL BKW-OPERATORS 187

|T,s—Ts|—0 for each seS, it follows that |T,x— Tx| — 0 for every
xe X

By the same method, we can prove the following. Here we give an
elementary proof. We denote by N the set of positive integers.

LeMMA 2. Let Te B(X, Y). Then Tes-BKW(X, Y; S) if and only if for
every sequence {T,},.n in B(X, Y) such that |T,| <|T| for each ne N and
\T,s—Ts|—0 for each seS, it follows that |T,x— Tx| — 0 for every
xeX.

Proof. The proof of sufficiency is trivial. Hence we suppose that
Tes-BKW(X, Y; S). When T=0, there is nothing to prove, so we assume
that 7# 0. Let {7,},.~n be a sequence in B(X, Y) such that

IT,I<|TI  for neN, (1)
|\ T,s— Ts|| -0 for seS. (2)

To prove | T, x — Tx| — 0 for x € X, suppose not. Then there exists x, € X
such that

lim sup || T, x, — Tx, | #0.

n— oo

By considering a subsequence, we may assume that

lim |7, xo— Tx,| #O0. (3)
Let
G,=T,—a,T-T,)=1+a,)T,—a,T, 4)
where a, is a nonnegative number such that |G, | =|T|. By (1), (3), and
the intermediate valued theorem, there exist such «, and {a,}, is a
bounded sequence. By (4),
G,—T=(14a,T,—T). (5)

Then by (2), for each se S we have
\G,s—Ts|=(14+a,)|T,s—Ts| >0 as n— 0.
Since Tes-BKW(X, Y; S), |G, x — Tx| — 0 for every x € X. But by (3) and

(5), 1G,, xo— Txoll=(1+a,)|IT, xo— Tx,| does not converge to 0. This is
a contradiction.
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THEOREM 1. Let S be a separable subset of X. Then s-BKW(X, Y; S) =
BKW(X, Y: S).

Proof. We need to prove that s-BKW(X, ¥;S)c BKW(X, Y;S). Let
Tes-BKW(X, Y; S). Suppose that T¢ BKW(X, Y;S). Then by Lemma 1,
there exists a net {7} ,., in B(X, Y) such that

1751 < T for every Ae 4, (1)
\T,s—Ts| -0 for seS, (2)

and ||T, xo— Tx,| does not converge to 0 for some x, € X. Then there
exists a positive number ¢ > 0 such that for each i, € 4, we have

T, xo— Tx,| >0 for some 4> 4,. (3)

Let S be the closed linear span of S in X. Then S is a separable Banach
space. Here we use the fact that the strong operator topology on bounded
sets of B(X, Y) is metrizable if X is separable. By (1) and (2), we see that
T, — T strongly on S. Hence by the above fact and (3), there exists a sub-
sequence {7 } e~ in {7}, such that T, — T strongly on S and

|T,, xo—Txo| >0  for neN. (4)

Since Tes-BKW(X, Y;S), by Lemma 2 T, — T strongly on X. But this
contradicts (4). Thus we get our assertion.

The following example shows that Theorem 1 is not true without the
condition of separability of S.

ExampLE 1. Let Q=pSN\N, where SN is the Stone-Cech compactifi-
cation of N, and let S be the ideal of all continuous functions vanishing
at a single point. We note that S is not a separable subspace of C(2). In
[13], Scheffold proved that

I1¢ BKW(C(Q); S) and Ies-BKW(C(R); S),

where 7 is the identity operator on C(£); see also [9, p. 164].

3. FUNCTION ALGEBRAS

Let Q be a compact Hausdorff space. A supremum norm closed sub-
algebra A of C(Q) is called a function algebra on £ if 4 contains constant
functions, and for distinct points x, y in Q there exists a function f € 4 such
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that f(x) #f(y). In this section, every A denotes a function algebra on Q.
We denote by 04 the Shilov boundary of A, that is, 04 is the smallest
closed subset of ©Q such that |/, =sup{|f(x)|; xedA4} for every f€A.
When 4 = C(£2), we have 04 = Q. We identify a point { in € with J, the
point evaluation of 4 at {:J,(f)=/({) for fe A. Hence we may consider
that 04 =« Q = A*. A closed subset E of 2 is called a peak set for A if there
exists /in 4 such that f=1 on E and |f| <1 on Q\E. A point { in Q is
called a p-point if {{} =), E, for some peak sets E,. The set of p-points
is dense in 0A. Let D be the open unit disk and let I” be the unit circle. Let
<o/ be the disk algebra, that is, .o7 is the supremum norm closed algebra of
continuous functions on D and analytic in D. Then we have d.«/ =I". If
feAd with ||f]|, <1, then hof e A for every he .o/. References [5, 7] are
nice for function algebras and the disk algebra.

In this section, we study s-BKW(X, 4; S) and BKW(X, 4; S) for normed
spaces X and ScX. We denote by X* the dual space of X and
Xi={FeX* ||F|<r} for r>0. Let

Us(X})={FeX} if GeX}, F=G on S, then F=G on X}.

The set Ug(X?¥) is called the uniqueness set for S and this set plays an
essential role in the study of the Korovkin type of approximation theorems
(see [12, 16, 19]).

LemMMA 3 [ 19, Theorem 1.2]. Let X, Y be normed spaces and S < X. Let
E be a weak*-closed subset of Y¥ such that | y| =sup{|F(y)|; FeE} for
every ye Y. Let Te B(X, Y). If T*(E) c Ug(X7yy), then Te BKW(X, Y; S),
where T* is the dual operator of T.

The main interest is whether the converse assertion of the above result
is true or not for a function algebra Y=4 and E=0A4. In [19, Theorem
1.4], Takahasi proved that the converse is true when Y is a supremum
norm closed subalgebra of continuous functions on a locally compact
Hausdorff space which contains the space of all continuous functions
having compact support. Therefore

BKW(X, C(Q); S)={TeB(X, C(Q)); THQ) = Ug(Xtr))}

for every normed space X and S < X, where we identify a point { in 2 with
the unit point mass 6, at {. When Y= 4 is a function algebra, we have the
following theorem.

THEOREM 2. Let A be a function algebra. Let X be a normed space and
Sc X. Then

BKW(X, 4; S)={TeB(X, A); T*(04) = Us(Xi7))}.
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Moreover, if 0A satisfies the first countability axiom, then s-BKW(X, 4; S)
= BKW(X, A4; S).

COROLLARY 1. [If Q is a compact Hausdorff space satisfying the first
countability axiom, then s-BKW(X, C(Q); S)=BKW(X, C(Q); S) for every
normed space X and S < X.

By Example 1, we can not remove the condition of the first countability
of Q in Corollary 1.

Proof of Theorem 2. By Lemma 3, we have
{TeB(X, A); T*(04) c Us(X#,)} « BKW(X, 4; S).

To show the converse inclusion, let 7e BKW(X, 4;S) and {,€04. We
may assume || 7| =1. We shall prove that

T*Ly=T%*0, € Ug(XF).
Let Fe X* such that |F| <1 and F=T%*{, on S. Then
F(s)=(Ts)({o) for seS. (1)
It is sufficient to prove that
F(x)=(Tx)({,) for every xeX. (2)

Let {U,} ., be the net of all open neighborhoods of {, in dA4. Then there
exists a p-point {, in U,, and there exists /i, € 4 such that |/,]| . =1 and

(el{cedd; |h(Q)=1}={edd; h(&)=1} < U,. (3)

For each fixed A€ 4, using /1, we shall find a sequence { f, ,},cn in 4
such that

faanl)=1 for every neN, (4)
|fonl 11 =Sl <1+ 1/n on 04, (5)
|f/1, nl < l/n on aA\U) (6)

Let
B,={zeC;|z|+|l—z|<1+1/n} and B,={zeC;|z|<l/n}nB,. (7)

Let

g(z)=(14+2)/2, zeD,
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and for 0 <r<1 let

plz)="—". zeD,
1—rz
o(z)'—1 14z _
(z) =—"—— h = D.
V,(z) R where o(z) 2 zE

Then g, ¢,, and V¥, are contained in the disk algebra .o7. Since /(D) is the
lens-shaped closed domain (see [ 14, p. 27]), by taking r, very close to 0
we have

g, (D))= B,. (8)

We note that r; depends on n. By (3), 1 eh,(U,) and h,(U¢) is a compact
subset of D. Hence by taking r, very close to 1, we have

Gy (US) =y, (g7 (B,)). )

We note that r, depends on n. Let

f)“n:go(//” O¢r20h2'

Since goy, °¢,,eo/ and h,eAd, we have f, ,eA. Since 1=g(1)=
v, (1)=¢,(1), by (3) we get (4). By (7) and (8), we have (5). By (7) and
(9), we get (6).

Now for Ae 4 and neN, let

Tl/l,n'x:F(x)f/l,n_’_(l_.f/l,n) sz XEX (10)
Then T, , € B(X, A), and on 04 we have

|75, o X I S TEQOIL, ol + 11 =10 T
<l + 1 =150 x|
<(I+1/m)lx| by (5).
Hence |77, | <1+ 1/n. Let

n
n+1

T}.,n: T’A,n' (11)

Then |7, ,| <1=|T|. We note that {7, ,} ;. .caxn~ is a net. We claim
that

lim || T ,s—Ts|.. =0 for seS. (12)
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To show this, let se S with |ls| =1. By (10) and (11),

1
T, x— Tx:n%(F(x)—Tx)f,Ln—m Tx, xeX. (13)

For any ¢>0, by (1) there exists 4, € A4 such that
|F(s)—(Ts)({)| <e for (eU,,1>4,.
Then by (5) and (13),

1
(T, ,s—Ts){)|<e+—— for (eU,, A>1,. (14)
’ n+1

By (6) and (13),
(T ,s—Ts)({)|<3/(n+1) for (e€dA\U;, A>1,. (15)

By (14) and (15), we obtain (12).
Since Te BKW(X, 4; S), by Lemma 1 we have
lim |7, ,x—Tx|, =0 for every xeX.
Hence o
lim (7, ,x — Tx)({;)] =0. (16)

An

By (4) and (13),

(T, x—Tx)((,) = n”ﬁ F(x)— (Tx)(C,).

Since {; — {,, by (16) we get (2). As a consequence, we obtain
BKW(X, 4;S)= {Te B(X, A); T*(0A4) = US(X""‘TH)}. (17)

When 04 satisfies the first countability axiom, we can take a sequence of
open subsets {U,}, .~ of 04 such that

[e’s}

{4’0} = ﬂ Un < Un+l c Un'

n=1

Replacing 4 by n in the proof of the first assertion, by the same argument
we can prove that

s-BKW(X, 4; S) = {Te B(X, A); T*(0A4) = Us(X¥7))}.

Then by (17) and BKW(X, 4; S) = s-BKW(X, 4; S), we obtain that
s-BKW(X, 4; S) = BKW(X, 4; ).
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When X=A, as a special case of Theorem 2 we have the following
corollary.

COROLLARY 2. Let A be a function algebra and S < A. Then the identity
operator is contained in BKW(A; S) if and only if for every {€0A and
e A* such that ||u|| <1 and u(h) =h({) for every he S, it follows that u=_.

This result solves in the positive a conjecture posed by Altomare in [2].
Also, by Theorem 2, we have the following corollary. We note that this
corollary also follows from combining Corollary 2 with Altomare’s result
[1, Theorem 3.17.

COROLLARY 3. Let A be a function algebra and S < A. Then the identity
operator is contained in BKW(A; S) if and only if for every function algebra
B, every T e B(A, B) satisfying T*(0B) < 0A is contained in BKW(A4, B; S).

4. BKW-OPERATORS ON THE DISK ALGEBRA

In this section, we mainly discuss BKW(.e7; S) for the disk algebra .o7.
By Theorem 2, for a function algebra 4 we have 7T'e BKW(4; S) if and
only if T#(0A4) < Us(Afy). Generally, it is difﬁcult~ to check whether T
satisfies the latter condition or not. For S < 4, let S be the closed linear
span of S. We have the following lemma (see also [ 19, Lemma 2.1]).

LemmaA 4. Let A be a function algebra, S< A with S#A, and R> 0.
Then Ug(A%)= Us(AR). If FeUs(A%), then |F|s=R, where |F|z=
sup{|F(s); s S, |s] .. =1}.

Proof. It is easy to see that Ug(A%)=Us(A4%). Let Fe Ug(A%). To
prove |F|s=R, suppose that |F|s< R. By the Hahn—Banach extension
theorem, there exists Ge A* such that G=F on S and |G| = ||F|s<R.
Then there exists He A* such that H=0 on S, H# 0 on A, and
|H|| <R—|G]. Let

G,=G+rH, o<r<l.
Then |G,|<R, G,=G=F on S, and G, #G,, for r, #r,. Hence
Fé¢ Ug(A%). This is a contradiction.

We may identify 4 and 4,, Then 4 is a closed subalgebra of C(04). We
denote by M(0A) the space of bounded (with respect to the total variation
norm) Borel measures on 04 and M,(04) = {ue M(0A); |u| <r} for r>0.
By the Hahn-Banach and Riesz representation theorems, for each Fe 4*
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there are some measures 4 in M(0A) such that |F|=|u| and F(f)=
foufdu for fe A. By identifying Fe A* with one of the above measures g,
we consider that

A* = M(0A)= C(0A)*.
Under these considerations, Theorem 2 and Lemma 4 state the following.

LEMMA 5. Let A be a function algebra and S = A with S# A. Then Te
BKW(4; S) if and only if for each { € 0A, it follows that

(1) T*(eM(0A) and |T*{| =T,

(2) | T* | =sup{|fossdT* {l;5€8, |Is] . =1},

(3) if wueM;(0A) and saAsdT*CzsaAsd,u for seS, then
ouf dT* {={,.f du for every f € A.

In the above, condition (3) is essential, and (1) and (2) are deduced from
(3). To clear the condition on 7*{ for Te BKW(4; S), we add (1) and (2).

Let o/ be the disk algebra on D. Then 0./ =TI, the unit circle. For
Y e/, let M, be the multiplication operator on .«7: M, f=yf for fe.o/.
For ¢ € o7 with [|¢[| , <1, let C, be the composition operator on .Z: C; f=
fop for feof If be.o/ and |b| =1 on I, then b is a finite Blaschke product
and b has the form

k

b(z)=1 ]

n=1 |Zn| 1*27,,2

—Z,2z—2, _

s zeD,

for some constant A with |A|=1 and z,eD,n=1,2,...,k, where we
consider that —0/0=1 (see [7]). Since I'=0.e/, by Theorem 1 or 2 we
have s-BKW(.«Z; {1, z} ) = BKW(.«Z; {1, z}). In [ 16], Takahasi proves that
C, e BKW(; {1,z}) for a finite Blaschke product ¢. The following
theorem gives a complete characterization of operators in BKW(e/; {1, z}).

THEOREM 3. Let of be the disk algebra. Then
BKW(; {1,z})={aM, C,;, ¢ are finite Blaschke products, ae C}.
Proof. Let S={1,z}. Let Y, ¢e.o/ with |y|=|¢|=1 on I' and let

T=M,C,. Then |T||=1. To show Te BKW(</; {1,z}), let (e I". By the
definition of T,

(T*O)(f) = (TN = YOS )L = (Y(L) dy)(f)

for fe.o/. Hence we may consider that T*{ = ¢({) d,4). Now it is easy to
see that T*( e Ug(.o/¥). By Theorem 2, Te BKW(.«Z; {1, z} ).
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Next, let Te BKW(.oZ; {1, z}). We may assume that [|77| = 1. Let

y=Tled, (1)
P, =Tze A. (2)
Now we shall prove
Wl=I¢[=1 onl. (3)
Let {, e I'=0.</. Then
frdT* Co=(T™* L)1) =(T1)(Co) =¥ (&), (4)
LZ@’T* Co=(T2)(Lo) = $1(o) (5)

Since S= {1, z} and |a+ bz, = |a| + |b| for a, be C, we have

>

sup {“Fs dT* {,

;seS, |s|x=l}=max{

jr dT* {,

Lz dT* ¢,

J

Hence, by Lemma 5, we have |T*{,| =1 and then

W(ol=1 or  |h:({o)l =1

To prove (3), suppose not. Here we assume that [y({,)|=1 and
|¢,({y)] <1. By the same way, we can work for the case |y({,)| <1 and
|¢,(Ly) =1. Since |Y(y) d,(Ly)| <1, it is not difficult to find many
probability measures v on I” of the form

v=ad,+(1—a)o,, where O0<a<l and t,,t,erl,

such that

| zdv=To) ¢:(o).
Let u=y({,) v. Then ||u|| =1, and by (4) and (5) we have
Ldu — (o) = jr dT*(, and frzdﬂ = $i(lo)= frsz* Lo (6)

By the above construction of x4, it is easy to see the existence of u, and
W, satisfying (6) and [, z>du, #(,z>du,. Then by Lemma 5, T¢
BKW(.«Z; {1, z}). Hence we get (3).
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Now by (3), (4), and (5), for every { e I” we obtain

T*(=yY({) 04y where  $(0)=¢(OW(L)

Therefore we have

(TN =(T*O() = (O(f¢))  for fed.

When f=z", we have

Yo =iy e,  neN (7)

By (1), (2), and (3), ¥ and ¢, are finite Blaschke products. Then by (7),
we obtain ¢,/ €.o/ and that ¢ =¢,/}y is a finite Blaschke product. This
completes the proof.

By the same argument, we can get the following.

THEOREM 4. BKW(C(I); {1, z})={aM, Cys; ¥, € C(I'), || = |¢| =
onT,aeC}.

Also in the same way as the proof of Theorem 3, we obtain the following.

THEOREM 5. BKW(.o/; {1,2"})={0} and BKW(C(I'); {1,z"})={0}
for n=2.

Proof. Let n>=2. We only prove the first assertion. Let Te
BKW(<7; {1,z"}) and |T|=1. Let y =Tle.o/ and ¢ =Tz"€.</. In the
same way as the proof of Theorem 3,

lWl=1¢l=1 on I.
Let (eI Then

jf dT*{=y(({)  and fﬂ" dT* { = §({).

Let {;, ..., ¢, be the distinct points in " such that
=y ) for 1<j<n

a, =1, let

Fora=(a,,...,a,) with a;>0 and 37_, q,

1= (X 4,0,).

J=1
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Then ||u, || =1=[T*(], and

jrduﬁzp(o and Jrz"duu=¢<c>.

It is not difficult to see that [, z""'du, # [, z"""dT*{ for some a=
(ay,...,a,). Hence, by Lemma 5, we have 7¢ BKW(.«Z; {1, z"}). This is a
contradiction.

Let Te BKW(«/, 4; {1, z}) with |T| =1 for a function algebra A. Then
in the same way as the proof of Theorem 3, we have

|T1|=|Tz| =1 on 04,
Tf=(fo¢)  forevery fe,
where y =Tle A, $ =Tz/T1, and
(T1)(Tz/T1)"=(Tz)"/(T1)" 'e A4 for neN.

Here the reader may expect that ¢4 and T=M, C, for y, ¢ € A. But it
is not so.

ExampPLE 2. Let H*(D) be the space of all bounded analytic functions
on D. For each fe H*(D), there exists a radial limit function f(e") for
almost every e’ e I. We denote by H®(I") the space of these radial limit
functions, and we identify H*(I") with H*(D). Let A=H>(I")+ C(I").
Then A is an essential supremum norm closed subalgebra of L*(I"), hence
A is a function algebra (see [6]). By [ 8], there exist inner functions ¢, and

n+1

¢- such that ¢q,/q, ¢ A and ¢5* " /q'| € A for every ne N. Let

Tf=q\(f°(q2/q:1)) for fe.

Then T e B(oZ, A). By the first paragraph of the proof of Theorem 3, we
have Te BKW(.«, 4; {1, z}). By the definition of T, T1 =¢, and Tz =q¢,,
so that Tz/T1 =q,/q, ¢ A. But (Tz)"/(T1)"~'=q4/q" ' € A for ne N.

Finally, we discuss BKW(.<Z; {1, z, z?}). In [16, Theorem 1], Takahasi
proved that if ¢, and ¢, are finite Blaschke products, and a,, a, are
positive numbers, then a, Cy, +a, C,, € BKW(.oZ; {1, z, z?} ). He actually
proved that

LEMMA 6. {a,0. +ay0.,;2,,2, €a,+a,=1,a,,a,>0} c Uy, . (M (I)).

29

By Takahasi’s result and Theorem 3, we have a conjecture that if
TeBKW(; {1,z z%}), then T has the form

T:al M'//l Ctﬁl +ﬂ2 sz C¢2,
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where ; and ¢,;, i=1, 2, are finite Blaschke products and a,, a, € C. We
show two examples which say the above conjecture is not true.

ExampLE 3. Let A(e”)=(e"+e " +2)/4, ¢?cl Then 0<A<1 on I.
Let

(T)(e") = 4(e”) f(e”) + (1 = A(e)) f(e*") = (AC.+ (1 = ) C2)(f)(e")

for fe /. Then |(Tf)(e”)| < fl ... For fe o, we can write as f(e") =
f(0) +e™h(e”) for some f € .o/. Then

(Tf)(e") =1(e*) + () f(e?) — f(e*?))
=f(€2i0) + )v(ef()) ei()(h(ei()) _ ei() h(e2i()))
:f(ezm) + (h(ezé)) _ eiH h(eZié)))(eZi(?_i_ 1 + 261(9)/4
€.
Hence Te B(.«/), | T| =1, and T1=1. By the definition of 7,
T* e = (em + e + 2)/4 5€m + (1 — (e”} + e + 2)/4) 5621'0.

Then by Lemma 6, T* e e U,, . .o(M,(I')) for every e eI’ Hence by
Theorem 2, we have Te BKW(.oZ; {1, z, z*} ). We note that 4 ¢ .o/

ExampPLE 4. We consider that {e¢”; —n<0<n}=1I. Let A(e”)=
(e +e70242)/4, ¢”eT. Then 0<A<1 on I Let

(TF)(e”) = Me?) (%) + (1 = Ae™)) f(—e”?)
=(ACL+(1=2) C_ L))

for fe /. We note that the function ,/z=e™? on I'is not continuous at
z= —1. We note that T1 =1. For n>1, we have

(TZ2n)(ei6) — l(eiﬁ)(ein(-)_eine) + eim‘) — einH =z"e JZ/,
(T22n+l)(ei0) — 2l(€i0) ein{) €i0/2 _ ein() em/z
z(ei(n+1)0+ein8)/2

=(z"""+z")2e .

For each f € .o/, there exists a sequence of analytic polynomials { p,}, such
that ||p,—f|l.. = 0. By the above, Tp, e€.«/. By the definition of T,
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| Tp,— Tf| ., =0 as n— oo. Hence Tfe.o/ for every fe.«/. Then in the
same way as Example 3, Te BKW(«7; {1,z,2%}), |[T|=1, and T1 =1.

By the above two examples, we think that it is fairly difficult to give a

complete description of operators in BKW(.«Z; {1, z, z*} ).
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